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Lamprey, locomotion (swimming) 

Head oscillation lags tail
backward swimming

O
ne w

ave length over 
about  100 body segm

ents Head oscillation leads tail
forward swimming

Spatially organized oscillatory neural activities in the spinal 
neural circuit generate oscillatory muscle action for swimming.

The nervous system survives under in vitro conditions for days 
for well controlled experimental study: fictive swimming.

A textbook model system to study motor control, 
neural circuit  (network),  and central pattern generator (CPG).



Towards head

Two segments in the 
spinal cord neural 
circuit (the CPG):

Left side Right side

To motor 
neurons

To motor 
neurons

To motor 
neurons

E EC C

L L

E EC C

L L

Three types of neurons:

E (excitatory), 
C (cross-caudal inhibitory), 
L (inhibitory)

To motor 
neurons

Towards tail



Towards head
Experimental data in literature:

Spontaneous oscillations occur in decapitated 
sections with a minimum of 2-3 segments, 
from anywhere along the body.

E EC C

L L

E EC C

L L

E and C neurons: shorter range connections 
(a few segments), L: longer connections. 
Approx. 100 segments for whole body

Head-to-tail (rostral-to-caudal) 
descending connections dominate

Towards tail

E and L oscillate in phase, C phase leads.



Representative Previous works

Grillner, Lansner, Hellgren, Kozlov, Brodin, Ekeberg, Wallen, etc:
Simulation of CPG with detailed cellular properties.

Others/Engineering: 
e.g., Ijspeert et al:
genetic algorithms to 
design part of the 
networks for desired 
behavior.

Our Work: analytical study of the neural circuit.

•How do oscillations emerge when single segment does not 
oscillate? --- {no previous studies}

•How are inter-segment phase lags determined by connections ---
{not yet fully understood in previous works}

•How can the same network do both forward and backward 
swimming? how is it controlled?
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Kopell, Ermentrout, Cohen, Holmes, etc: Mathematical model of 
CPG simplified as  a chain of coupled abstract phase oscillators.

d/dt θi = ωi + Σj fij (θi, θj)



EL
LL
CL

( )d/dt = -

Neurons modeled as leaky integrators

Membrane 
potentials

+ external 
inputs from 

outside CPG
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Inputs from other 
neurons within CPG
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( )d/dt = -

Neurons modeled as leaky integrators

Membrane 
potentials

+ external 
inputs
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Contra-lateral connections 
from C neurons

Left-right symmetry in 
connections



EL
LL
CL

( )d/dt = -

Neurons modeled as leaky integrators

Membrane 
potentials

+ external 
inputs
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E,L,C are 100 
component vectors: EL=

E1
L

E2
L

E3
L

:

EL
LL
CL

( ) is an 300 component vector



EL
LL
CL

( )d/dt = -

Neurons modeled as leaky integrators

Membrane 
potentials

+ external 
inputs

EL
LL
CL

( )

E C

L

EC

L

C

L

EC

L

E

+
g(EL)( )

Connection 
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.J11 J12 J13

J,K,etc are 100x100 matrices:

J= J21 J22

J31 .

.

.

.

.Near-
diagonal 
matrix
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( )d/dt = -

Neurons modeled as leaky integrators

Membrane 
potentials

+ external 
inputs
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Equations still too complex,
Need simplification!!!

This is a 300 x 300 matrix



Methods used in the simplification/analysis:
1. Linear approximation

to reduce to a low-dimensional system (mode)
using various real and approximated symmetries.

2. Using physiological data to arrive at another additional 
simplification to a 2-dim system 

3. Computer simulation confirming the validity of the 
approximation

4. Nonlinear analysis --- to study coupling between 
modes and stability

5. Coupled oscillator analysis for boundary conditions



Left and right sides are coupled

E EC C

L L

Left Right

“+” mode
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The 
swimming 
mode !!

-

“-” mode

EC
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Now decoupled!



Mathematically:

d/dt = -
EL
LL
CL

( ) + external 
inputs

++ (g(EL))g(LL)
g(CR)
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Left Right

E ±
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C±
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Linear approximation leads to decoupling
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Mathematically:

Swimming mode always dominant!

d/dt = -
EL
LL
CL

( ) + external 
inputs

++ (g(EL))g(LL)
g(CR)
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CL

( ) +( )J
W
Q

0
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The connections scaled by the 
gain g’(.) in g(.), controlled by 
external inputs.
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inputs
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Left Right

Swimming mode
C- becomes excitatory.
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Linear approximation leads to decoupling
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d/dt = - ++ (E- )L-

C-

E-
L-
C-

( ) +( )J
W
Q

0
0

-H

+K
+A
+B

Dynamics for the left-right antiphase (swimming) mode
E-
L-
C-

( )
All connections J, W, Q, H, K, A,B are approximately that,  e.g., 
connections J ij depend only on segment difference 

x = i - j.

So J ij J(x)                         J(k)
Fourier Transform

Jij Ej J(x-x’)E(x’) J(k) E(k)

E1, E2, E3 …      E(x)                        E(k)

Amplitude of spatial waves E(x) = cos(kx+φ)

k=2πm/N

)J(k)    0 K(k)

W(k)   0 A(k)

Q(k)   -H(k) B(k)
(

Fourier Connections
Different waves k decouple from each other: 

E(k)
L(k)
C(k)( )d/dt = - +

E(k)
L(k)
C(k)( ) E(k)

L(k)
C(k)( )



)J(k)    0 K(k)

W(k)   0 A(k)

Q(k)   -H(k) B(k)
(
Fourier Connections

Solution:
E(k)
L(k)
C(k)( ) exp [ -t +λ(k)t ]

eigenvector Eigenvalue of 

Spatial waves, oscillating 
at frequency ω,

Oscillation phase

E ~ exp[ -t +Re(λ) t  - i (ω t - k x + ΦE )]

L ~ exp[ -t +Re(λ) t  - i (ω t - k x + ΦL )]

C ~ exp[ -t +Re(λ) t  - i (ω t - k x + ΦC)]

Wavenumber, k
Wavelength ~1/k

k>0,  phase descending 
from head to tail

k<0, phase descending 
from head to tail

E(k)
L(k)
C(k)( ) exp [ -t +Re(λ) t  -i ω t]

-Im(λ)

Wave unsustainable unless Re(λ) > 1

Connection 
structure 
decides which 
wave k has 
Re(λ(k)) > 1



)J(k)    0 K(k)

W(k)   0 A(k)

Q(k)   -H(k) B(k)
(
Fourier Connections

In a nutshell:

E E E EE E

J connections

J(x)

x

J(k)

k

E
E

C
C

E
E

C
C

L
L

L
L

E
E

C
C

L
L

To head To tail



In a nutshell:

)J(k)    0 K(k)

W(k)   0 A(k)

Q(k)   -H(k) B(k)
(
Fourier ConnectionsW connections
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In a nutshell:

)J(k)    0 K(k)

W(k)   0 A(k)

Q(k)   -H(k) B(k)
(
Fourier Connections

E C
Q connections
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In a nutshell:

)J(k)    0 K(k)
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Fourier ConnectionsH connections
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In a nutshell:

)J(k)    0 K(k)

W(k)   0 A(k)

Q(k)   -H(k) B(k)
(
Fourier Connections

C

Similarly, connections from C cells
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To head To tail



)J(k)    0 K(k)

W(k)   0 A(k)

Q(k)   -H(k) B(k)
(
Fourier Connections

E ~ exp[ -t +Re(λ) t  - i (ω t - k x + ΦE )]

L ~ exp[ -t +Re(λ) t  - i (ω t - k x + ΦL )]

C ~ exp[ -t +Re(λ) t  - i (ω t - k x + ΦC)]

Wave unsustainable unless Re(λ) > 1

Connection 
structure 
decides which 
wave k has 
Re(λ(k)) > 1

The connections are such that, 

Re(λ(k)) largest for wave k corresponding 
to the swimming mode, when k 
corresponds to wavelength of a whole 
body length, and

In default situations, swimming forward, k>0



E-
L-
C-

( )d/dt = -
E-
L-
C-

( ) + ( E-)L-

C-

0( )J
W
Q

0

-H

K
A
B

Experimental data show E &L synchronize, C phase leads by quarter cycle

The swimming mode

d/dt (E--L-) = - (E--L-)  + (J-W) E- + (K-A)C-

Compare with 
harmonic oscillator

d/dt x =  ω y
d/dt y = -ω x

Simplification : E=L,      J=W, K=A

d/dt =
E-

C-
( ) ( E-)C-( )J

Q -H

K

B-1

-1

E-=L- (J-W) E- + (K-A)C- =0

~E- ~C-

Since J, W, K, A 
all near diagonal

Prediction 1: H>Q, i.e., L inhibits C more 
than E excites C, needed for oscillations!



E-
L-
C-

( )d/dt = -
E-
L-
C-

( ) + ( E-)L-

C-

0( )J
W
Q

0

-H

K
A
B

Experimental data show E &L synchronize, C phase leads by quarter cycle

The swimming mode

d/dt (E--L-) = - (E--L-)  + (J-W) E- + (K-A)C-

Simplification : E=L,      J=W, K=A

d/dt =
E-

C-
( ) ( E-)C-( )J

Q -H

K

B-1

-1

E-=L- (J-W) E- + (K-A)C- =0

~E- ~C-

Since J, W, K, A 
all near diagonal

Prediction 1: H>Q, i.e., L inhibits C more 
than E excites C, needed for oscillations!

(E, L)- C-excite

inhibit

E

L

C
HQ



The swimming mode

d/dt =
E-

C-
( ) ( E-)C-( )J

Q -H

K

B-1

-1

Oscillator equation: d2/dt2 E + (2-J-B) d/dt E + [(1-J)(1-B) +K(H-Q)] E =0

Damping Restoration force

Simulation



The swimming mode’s wave number k

d/dt =
E-

C-
( ) ( E-)C-( )J

Q -H

K

B-1

-1

J(k)

k

J(x)

x

E E E EE E

J connectionse.g.,
expand in small k<< 1: 

J(k) = j0 –ikj1 –k2j2 + O(k3)
where jn = Σx J(x) xn/n!

etc

moment



d/dt =
E-

C-
( ) ( E-)C-( )J

Q -H

K

B-1

-1

The dominant eigenvector k determines the 
global phase gradient (wave number) k

For small k, Re(λ) = const - k ·a,

Eigenvector 
solution (E-)C-

eλt+ikx ~ e-i(ωt-kx)

where a ∝ first moment of (K(H-Q) –(B-J)2)

Eg. Head-to-tail B tends to increase the head-to-tail phase lag (k>0);
while head-to-tail  H tends to reduce or reverse it (k<0).

E EC C

L L

K H Q

J

B

Prediction 2: swimming 
direction could be controlled 
by scaling  connections  H, 
(less easily also Q  (K, B, J)),
e.g.,  through external inputs 
( via recruiting more neurons or 
via gain g’(.) in the sigmoid 
function)



d/dt =
E-

C-
( ) ( E-)C-( )J

Q -H

K

B-1

-1

The dominant eigenvector k determines the 
global phase gradient (wave number) k

Eigenvector 
solution (E-)C-

eλt+ikx ~ e-i(ωt-kx)

So, e.g, increasing H (e.g, via input to L neurons) Backward 
Swimming

Forward swimming backward swimming

Scaling H & Q

Simulation results:



More intuitively,

See the system as a group of coupled oscillators 



Oscillator equation: d2/dt2 E + (2-J-B) d/dt E + [(1-J)(1-B) +K(H-Q)] E =0

Damped single segment 2 > Jii + Bii
Self excitation does not 
overcome damping

Unlike previous models:

Segmt. 
j

Segmt. 
i

Fji Fij

When driving forces 
feed energy from 
one oscillator to 
another, global 
spontaneous 
oscillation emerges.ith damped oscillator 

segment of frequency ωο

Inter-segment interaction:
d2/dt2 Ei + α d/dt Ei + ωο

2 Ei = Σj Fij

Driving force 
from other 
segments.

Feeds energy when 
Ei & Ej synchronize

Feeds energy 
when  Ei lags Ej

Feeds energy 
when  Ei leads Ej

Balance between them controls phase lag and direction !

Coupling: Fij= (Jij + Bij) d/dt Ej +[B+J] ij Ej -[BJ+K(H-Q)]ijEj



Feeding energy by coupling

Feeds energy when 
Ei & Ej synchronize

Feeds energy 
when  Ei lags Ej

Feeds energy 
when  Ei leads Ej

Coupling: Fij= (Jij + Bij) d/dt Ej +[B+J] ij Ej -[BJ+K(H-Q)]ijEj

Dominant term is above, since phase gradient is small

this as more dominating

The relevant connections for oscillations are  thus 

J E to E connections

B        C to C connections
E EC C

L L

Left Right



Feeds energy when 
Ei & Ej synchronize

Feeds energy 
when  Ei lags Ej

Feeds energy 
when  Ei leads Ej

Coupling: Fij= (Jij + Bij) d/dt Ej +[B+J] ij Ej -[BJ+K(H-Q)]ijEj

Segmt. 
j

Segmt. 
i

Fji Fij

Given Fji > Fij, (ascending connections dominate)

B+J  > BJ+K(H-Q) Forward swimming 
(head phase leads tail)

B+J  < BJ+K(H-Q) Backward swimming 
(head phase lags tail)

Controlling swimming directions

E EC C

L L



SIMULATIONS

Forward swimming:

Segment no.

E- = EL-ER



SIMULATIONS

Backward swimming:

Segment no.

E- = EL-ER



Turning

Amplitude of oscillations is increased on one side of 
the body.

Achieved by increasing the tonic input to one 
side only (see also Kozlov et al., Biol. Cybern. 2002)

EL,R

Time

Turn

Left

Right

Simulation
Forward 
swim



d/dt =
E-

C-
( ) ( E-)C-( )J

Q -H

K

B-1

-1
Linearized equations:

The dominant eigenvector k determines the 
global phase gradient (wave number) k

Eigenvector 
solution (E-)C-

eλt+ikx ~ e-i(ωt-kx)

When there are more than one mode with Re(λ) >0, nonlinear 
coupling between modes exist.

Nonlinear analysis (for simplicity in g(C) only)



Simulation results

Miller & Sigvardt (1998) measured 
power spectrum of lamprey oscillations

Nonlinear analysis of 
model equations

Prediction 3: second harmonic 
exists in “+” mode only 
(ie. left-right synchronous)

Frequency

neural 
oscillation 
power

Fundamental 
frequency

Second 
harmonic

Easily 
testable



Other conclusions from the nonlinear analysis:

•the swimming cycle, if its linear mode is dominant, is stable against 
perturbations of another linear, unstable, but less dominant mode.

•If two modes, forward and backward swimming modes, are dominant,
swimming direction could be selected by initial conditions, though 
experimental data indicates that this is less likely.



Boundary conditions: reduced amplitudes at 
head and tail can be understood

No translation invariance 
approximations, simply 
analyze oscillation coupling

d2/dt2 Ei + α d/dt Ei + ωο
2 Ei = Σj Fij



Summary 1:
100x3x2 coupled neurons in a  neural circuit of spinal cord

Translation symmetry

3 coupled units

100x3 coupled units in the swimming mode only

Left-right symmetry

2 coupled units related to harmonic oscillator

Experimental data on phase pattern allow simplification

Nonlinearity allows dominance of a single mode.

Selected mode controlled by neural connection 
patterns and external input --- testable predictions



Summary

Analytical study of a CPG model of suitable complexity 
gives new insights

How coupling can enable global oscillation from damped oscillators

How each connection type affects phase relationships

How and which connections enable swimming direction control 
--- can be tested experimentally.

Control of swimming speed 
(oscillation frequency) over 
a larger range

Include synaptic temporal 
complexities in model

Further work:


